Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0364920120370030108
Journal of Radiation Protection and Research
2012 Volume.37 No. 3 p.108 ~ p.115
Evaluation of Countermeasures Effectiveness in a Radioactively Contaminated Urban Area Using METRO-K : The Implementation of Scenarios Designed by the EMRAS II Urban Areas Working Group
Hwang Won-Tae

Jeong Hae-Sun
Jeong Hyo-Joon
Kim Eun-Han
Han Moon-Hee
Abstract
The Urban Areas Working Group within the EMRAS-2 (Environmental Modelling for RAdiation Safety, Phase 2), which has been supported by the IAEA (International Atomic Energy Agency), has designed some types of accidental scenariosto test and improve the capabilities of models used for evaluation of radioactive contamination in urban areas. For the comparison of the results predicted from the different models, the absorbed doses in air were analyzed as a function of time following the accident with consideration of countermeasures to be taken. Two kinds of considerations were performed to find the dependency of the predicted results. One is the ¡®accidental season¡¯, i.e. summer and winter, in which an event of radioactive contamination takes place in a specified urban area. Likewise, the ¡®rainfall intensity¡¯ on the day of an event was also considered with the option of 1) no rain, 2) light rain, and 3) heavy rain. The results predicted using a domestic model of METRO-K have been submitted to the Urban Areas Working Group for the intercomparison with those of other models. In this study, as a part of these results using METRO-K, the countermeasures effectiveness in terms of dose reduction was analyzed and presented for the ground floor of a 24-story business building in a specified urban area. As a result, it was found that the countermeasures effectiveness is distinctly dependent on the rainfall intensity on the day of an event, and season when an event takes place. It is related to the different deposition amount of the radionuclides to the surfaces and different behavior on the surfaces following a deposition, and different effectiveness from countermeasures. In conclusion, a selection of appropriate countermeasures with consideration of various environmental conditions may be important to minimize and optimize the socio-economic costs as well as radiation-induced health detriments.
KEYWORD
PAVAN, Urban environment, Radioactive contamination, Countermeasure, Dose reduction
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)